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We finished the discussion of the Kepler orbits in the two-body problem.  The orbit is 

described by 𝑟(𝜑) = 𝑐
1+𝜖 cos𝜑

, where 𝑐 = ℓ2

𝜇𝛾
 is a length scale and 𝜖 is an un-determined 

constant.  When the un-determined constant 𝜖 > 1, the denominator of 𝑟(𝜑) has a zero for 
some angle 𝜑, and the particle is off at infinity for that angle.  This is an un-bounded orbit, 
like those with energy 𝐸 > 0.  When 𝜖 < 1 the values of 𝑟(𝜑) are finite for all 𝜑, and the 
orbit is bounded, like those with 𝐸 < 0.  The fact that 𝑟(𝜑 + 2𝜋) = 𝑟(𝜑) means that the 
orbit is closed and periodic.   

The orbit for 𝜖 < 1 is an ellipse and is described by (𝑥+𝑑)2

𝑎2
+  𝑦

2

𝑏2
= 1, where  𝑎 = 𝑐

1−𝜖2
 is 

the semi-major axis, 𝑏 = 𝑐
√1−𝜖2

 is the semi-minor axis, and 𝑑 = 𝑎𝜖 is the distance from the 
center of the ellipse to the focus.  The ratio of semi-minor to semi-major axis lengths is 
𝑏/𝑎 = √1 − 𝜖2, showing that 𝜖 is the ellipticity of the orbit.  One can also derive Kepler’s 
third law of planetary motion relating the orbital period 𝜏 and the semi-major axis as 

𝜏2 = 4𝜋2

𝐺𝑀𝑠𝑢𝑛
𝑎3 for the case of a planet orbiting the sun (here one assumes that the mass of the 

planet is much smaller than that of the sun).  Finally we calculated the total mechanical 

energy in the center of mass frame as 𝐸 = 𝛾2𝜇
2ℓ2

(𝜖2 − 1).  This shows that orbits with 𝜖 > 1 
are un-bounded (and described by a hyperbola), and those with 𝜖 < 1 are bounded.  Orbits 
with 𝜖 = 1 are parabolic. 

We next started a discussion of scattering theory.  In the simplest scattering experiment 
one has a particle or entity (the projectile) that is launched with a known energy and 
momentum into a target, the projectile interacts with particles in the target, and then comes 
out as the same particle but with a new energy and momentum.  More generally, the particle 
could be absorbed by the target, or be transformed into one or more different particles upon 
exiting the target.  We can measure the exiting angle of the particle using spherical 
coordinates, with the z-axis along the initial projectile direction and the angular coordinates 
𝜃,𝜑 specifying the new direction. Examples of scattering experiments include Rutherford 
scattering and angle-resolved photoemission spectroscopy (ARPES). 

The only quantity not controlled in a typical scattering experiment is the impact 
parameter 𝑏 of the projectile with respect to the target particle.  The impact parameter is the 
distance of closest approach to the target particle, assuming no forces of interaction cause the 
projectile to change from its initial direction.  Because we cannot control the impact 
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parameter, we have to perform many experiments in which all possible values of 𝑏 are 
employed for the incident beam of projectiles.  We then give a statistical description of the 
resulting scattering.  With such a description, we can write the number of particles scattered 
𝑁𝑠𝑐𝑎𝑡𝑡 in terms of the number of particles incident 𝑁𝑖𝑛𝑐 as 𝑁𝑠𝑐𝑎𝑡𝑡 = 𝑁𝑖𝑛𝑐𝑛𝑡𝑎𝑟𝑔𝑒𝑡𝜎, where 
𝑛𝑡𝑎𝑟𝑔𝑒𝑡 is the density of target particles projected into the two-dimensional plane 
(𝑛𝑡𝑎𝑟𝑔𝑒𝑡~1/𝑚2) and 𝜎 is defined as the scattering cross section of each particle.  𝜎 is often 
measured in units of ‘barns’, which is 10−28𝑚2.  We can generalize the concept of cross 
section to any process, including capture (𝜎𝑐𝑎𝑝𝑡𝑢𝑟𝑒), ionization (𝜎𝑖𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛), fission (𝜎𝑓𝑖𝑠𝑠𝑖𝑜𝑛), 
etc.  This is done by using the definition 𝑁𝑠𝑐𝑎𝑡𝑡,𝑥 = 𝑁𝑖𝑛𝑐𝑛𝑡𝑎𝑟𝑔𝑒𝑡𝜎𝑥 for process “𝑥”. 

Experiments start with a beam of projectile particles of identical structure and equal 
initial momenta and energy.  The projectiles enter the target with all possible values of 
impact parameter.  One then measures how many particles come out with angle of exit  𝜃,𝜑 
and also the energy and momentum of the exiting particle.  Our job is to identify the force of 
interaction between the projectile and target particles from the number of particles scattered 
through angle 𝜃,𝜑, for all possible angles.  We write the ‘angle-resolved’ scattering cross 
section as 𝑁𝑠𝑐𝑎𝑡𝑡(𝑖𝑛𝑡𝑜 𝑑Ω 𝑎𝑟𝑜𝑢𝑛𝑑 𝜃,𝜑)  = 𝑁𝑖𝑛𝑐𝑛𝑡𝑎𝑟𝑔𝑒𝑡

𝑑𝜎
𝑑Ω

(𝜃,𝜑)𝑑Ω, where 𝑑𝜎
𝑑Ω

(𝜃,𝜑) is 
called the differential scattering cross section.  Note that the element of differential solid 
angle is 𝑑Ω = 2𝜋 sin𝜃 𝑑𝜃𝑑𝜑.  We expect that if this quantity is integrated over all possible 
exiting angles, we should recover the total scattering cross section for this process: 𝜎 =
∬𝑑𝜎

𝑑Ω
(𝜃,𝜑)𝑑Ω.  We shall assume that all scattering potentials are spherically symmetric, 

hence there will be no dependence on the 𝜑 coordinate. 

To find 𝑑𝜎
𝑑Ω

(𝜃,𝜑) we compare the area covered by the incident particles at impact 
parameters between 𝑏 and 𝑏 + 𝑑𝑏 (i.e. 𝑑𝜎 = 2𝜋𝑏𝑑𝑏) to the solid angle subtended by the 

exiting beam of particles (i.e. 𝑑Ω = 2𝜋 sin 𝜃 𝑑𝜃) to arrive at 𝑑𝜎
𝑑Ω

= 𝑏
sin𝜃

�𝑑𝑏
𝑑𝜃
�.  To find this, we 

need to calculate the trajectory of a projectile particle for every possible impact parameter.  
We then did the example of a point particle elastically scattering from a fixed hard sphere of 

radius 𝑅 and found that 𝑑𝜎
𝑑Ω

= 𝑅2

4
, which is independent of angle!  The total scattering cross 

section is just 𝜎 = 𝜋𝑅2, which is just the cross-sectional area of the sphere. 

 

 


